Supporting the Specification of Educational Modeling Languages and Learning Scenarios with a Domain-Specific-Modeling Approach

Authors: Pierre Laforcade, Boubekeur Zendagui, Vincent Barré

Contact email: pierre.laforcade@lium.univ-lemans.fr

Speaker: Boubekeur Zendagui

REDiM Project

(Model Driven Reengineering of Technology Enhanced Learning)

LIUM lab

(Computer Science Laboratory of Le Maine University)
Outline

1. Research context: Instructional Design & MDE
2. Categorization: the 3-leaf domain clover
3. Towards Domain-Specific Modeling
4. Summary and ongoing work
Research Context: instructional design and learning scenarios

- One standard
 - IMS-LD (*Learning Design* from the IMS consortium)
- Some instructional design languages
 - EML (*Educational Modeling Language*) or VIDL (*Visual Instructional Design Language*)
 - eg.: CPM, E²ML, coUML, LDL, MOT+, poEML, etc.
- Some tools
 - Editors, Players, *Learning Management System* (LMS), etc.
- Some reported observations
 - Lack of user-friendly tools for end-users (teachers, designers, ...)
 - Need for languages and tools
 - adapted/adaptable to communities of instructional design (terminology, notation, etc.)
 - Providing computer-based facilities for reusing/exchanging scenarios, interoperability, executability, etc.
Research Context: Model Driven Engineering

- History
 - Generalization of the MDA (OMG) specification for all technological spaces: OO, XML documents, DataBases, Ontologies

- Main ideas
 - Systematic use of models as primary engineering artifacts
 - The final system is developed by successive models transformations from a high level of abstraction towards platform-specific models, guiding code generation

- Principles
 - Modeling, Meta-modeling, Capitalization, Abstraction, Separation of concerns...

- Tools
 - Meta-model/language definition, transformation models tools, code generation, weaving model tools, generation of domain-specific model editors, etc.
MDE and learning scenarios

• Some instructional research works dealing with MDE principles

 ▸ The CPM language
 • a UML-based visual language for Problem Based Learning situations
 • models transformation from CPM models to IMS-LD compliant models

 ▸ The tools and techniques from the Bricole project
 • a MDE CASE-tool (ModX) for designing any kind of scenarios
 • model transformation application (Gendep) to set up a Learning Management System (LMS) from any IMS-LD-compliant scenario

 ▸ The MDLD environment (Model-driven Learning Design Environment)
 • editor helping learning designers to generate units of learning conformed to IMS-LD by graphically specifying BPEL-oriented modeling
Observations from the application of MDE to learning-scenarios

- **Models** correspond to
 - the various learning scenarios produced in accordance to the different phases of instructional design processes

- **Meta-models** correspond to
 - the terminology defined for the used EML/VIDL

- **Final system** correspond to
 - the final learning situation relying on system and human artefacts (not only code)

- **Separation of concerns** are applied with
 - many points of view (didactics, pedagogical, structural...) available
 - difficulty to separate LMS-dependent/independent learning scenarios

- **Omnipresence of the business learning domain**
- **Omnipresence for the need of graphical representations**

⇒ Some possible analogies but some specific constraints
Outline

1. Research context: Instructional Design & IDM
2. Categorization: the 3-leaf domain clover
3. Towards Domain-Specific Modeling
4. Summary and ongoing work
The 3-leaf domain-clover categorization for EML/scenarios

- 3 categories according to the business learning domain and objectives targeted
 - Practitioners-centered Scenario
 - Terminology = the one shared by a community of practitioners
 (in relation to some pedagogical theories, didactical fields as well as specific references to the LMS they use)
 - Objectives = act as a design guide, support of thinking/communicating
 - Abstract Scenario
 - Terminology = high-level abstraction for supporting pedagogical diversity + independence from any LMS
 - Objectives = exchange/interoperability
 - LMS-centered Scenarios
 - Terminology = specific to a LMS
 - Objectives = act as guide for manual or semi-automatic configuration of the LMS platform
The 3-leaf domain-clover categorization for EML/scenarios (2)

- Two-complementary formalizations for each category
 - Visual/graphical notation
 - For a human-readable scenario interpretable by practitioners
 - Textual notation (XML)
 - For a machine-readable scenario interpretable with no ambiguity

- Two kind of transformations for scenarios
 - Extra-domain (terminology change)
 - When: from one category to another or between 2 different EMLs of the same category
 - For what: exchanging with other communities of practitioners or for obtaining the objectives of the targeted categorization
 - Intra-domain (notation change)
 - When: between EMLs of the same categorization that share the same abstract syntax but differ from the concrete syntax (notation)
 - For what: adaptation to the public (machine/human) targeted by the transformation
Schematization

Practitioners-centered Scenario

Abstract Scenario

LMS-centered Scenarios

<?xml-s
<essay

<?xml-s
<essay

<?xml-s
<essay
Positionning of existent research works on EML/tools/LMS
Tooling needed to support our domain-oriented instructional design

- Tools and techniques needed to support emergence of communities of practice from our 3-categorizations
 1. To define domain-oriented EML/VIDL
 - Metamodeling techniques for specifying the terminology
 - Techniques for specifying human&machine-readable notations
 2. To graphically define learning scenarios (user-friendly editors)
 3. To realize the *intra* & *extra* learning scenarios transformations
Outline

1. Research context: Instructional Design & IDM
2. Categorization: the 3-leaf domain clover
3. Towards Domain-Specific Modeling
4. Summary and ongoing work
Domain Specific Modeling - DSM

- **Definition**
 - Software engineering methodology for designing and developing systems
 - DSM involves systematic use of a graphical domain-specific language (DSL) to represent the various facets of a system
 - DSM languages tend to support higher-level abstractions than General-purpose modeling languages

- **Approaches and tools**
 - *Software Factories* + *Visual Studio* (Microsoft)
 - *MetaEdit+, ATL, TIGER*
 - Eclipse modeling projects projet: EMF, GMF...

- DSM approach is applicable to our 3-domain categorizations
- DSM tools cover all the highlighted needs
Experimentation of EMF/GMF

- Objective of the exploratory experimentation
 - Providing practitioners with a UseCase-like visual editor for specifying Learning activities and roles performing them into learning phases

- Results
 - The metamodel
Experimentation of EMF/GMF (2)

- Visual editor, 100% EMF/GMF-generated (no hand-coding)

XMI/XML serialization of produced learning scenarios

```xml
<?xml version="1.0" encoding="UTF-8"?>
<lduc:Scenario xmlns:xmi=http://www.omg.org/XMI xmlns:lduc="lduc">
    <phase name="Act2">
        <activities name="Exploit available information to draw conclusions"/>
        <activities name="Reciprocal teaching" nextActivities="@phase/@activities.2"/>
        <activities name="Forum posts analysis"/>
    </phase>
    <actors activityRealized="@phase/@activities.0" name="Investigator" super="@actors.1"/>
    <actors name="Learner"/>
    <relations label="includes" source="@phase/@activities.0" target="@phase/@activities.1"/>
    <relations label="includes" source="@phase/@activities.0" target="@phase/@activities.2"/>
</lduc:Scenario>
```
Outline

1. Research context: Instructional Design & IDM
2. Categorization: the 3-leaf domain clover
3. Towards Domain-Specific Modeling
4. **Summary and ongoing work**
Summary and ongoing works

• Proposition of a conceptual framework for the application of MDE principles to scenario-based instructional design
 ▪ 3 categorizations for scenarios and languages reflecting different communities of practices sharing a same business learning domain towards specific objectives
 ▪ 2 notations per category to provide human and machine readability
• Domain Specific Modeling orientation to support our proposition
• DSM tooling can be helpful for
 ▸ Easing the emergence of community of learning design practices
 ▸ Supporting the building of user-friendly & visual learning editors

• Present and future works
 ▸ Deeper experimentation of the Eclipse GMF
 ▸ Experimentation of learning scenarios transformations with the Eclipse ATL tool
Thank you!

...Any questions?

Contact author → pierre.laforcade@lium.univ-lemans.fr

These works are funded by the French MILES project
Research context: our approach

- REDiM project
 - Instructional design and learning scenarios
 - Teachers, acting as designers, are the targeted end-users

- Postulate
 - The application of *Model Driven Engineering* (MDE) theories and practices is pertinent and useful for instructional design processes dealing with learning scenarios